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ABSTRACT Networks of weakly coupled oscillators are special cases of Hopfield networks and as such
may be used in building physical systems capable of associative memory recall and pattern recognition.
However, the existing architectures are not suitable for hardware implementation mainly due to the complex-
ity of required couplings between the oscillators. In this paper, we propose an alternative way of using coupled
oscillators in what we call ‘‘discriminant circuits’’ in analogy to the concept of ‘‘discriminant functions’’
in the field of artificial intelligence and machine learning. The main advantage of our system is in the
simplicity of its architecture, which relies only on local couplings between adjacent oscillators. Using this
architecture, we design a network of coupled CMOS oscillators as the core of a physical non-Boolean pattern
recognition engine. The simplicity of the proposed circuit makes it readily implementable on any standard
CMOS technology.

INDEX TERMS Associative memory, CMOS integrated circuits, coupled oscillators, Hopfield neural net-
works, ring oscillators.

I. INTRODUCTION

RECENTLY, there has been a rise of interest in using
coupled oscillators as non-Boolean processors [1]–[6].

Non-Boolean processing refers to a set of computational tasks
that are usually associated with the realm of artificial intelli-
gence and machine learning, such as pattern recognition and
associative memory recall. What these computational prob-
lems have in common is the inefficiency, if not impossibil-
ity, of developing algorithms based solely on combinational
(Boolean) logic for their solutions.

Networks of coupled oscillators have already been studied
as special examples of Hopfield [7]–[9] networks that are
famously capable of image reconstruction and associative
memory recall [10], [11], [13], [14]. However, it is diffi-
cult to see how these theoretical considerations can be used
to realize a physical associative memory engine. The main
reason for this is that in general, a network of n oscilla-
tors requires n2 programmable connections between oscilla-
tors [11], [12]. This can be easily seen from the well-known

Hebbian learning rule [11], [13], which determines the
coupling properties of the network and is formulated as

Cij =

m∑
k=1

ξ
(k)
i ξ

(k)
j (1)

where Cij is a complex number that determines the properties
(strength and inherent phase shift) of the coupling from the jth
to the ith oscillator, ξ(k) denotes the kth pattern to be stored
in the network, and m is the total number of patterns to be
stored. A short derivation of Hebbian learning rule from the
Kuramoto [15]–[17] model of weakly coupled oscillators is
presented in the Supplementary Material.

Hoppensteadt et al. [11] proposed an elegant way of
bypassing the connectivity problem in the networks of cou-
pled oscillators. In their approach, there are no direct connec-
tions between the oscillators and instead they are all coupled
through a shared medium. The shared medium, however,
needs to be excited by a carefully constructed signal so that
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the final mathematical equations governing the dynamics of
oscillators are identical to that of the fully connected network
with coupling coefficients given by (1). This approach does
not fully solve the connectivity problem and instead trades it
with another, perhaps equally hard, problem of generating the
required global signal that excites the shared medium [11].
Also the network design becomes complicated for larger n,
making it difficult to realize large networks of coupled oscil-
lators [11]. The possibility that oscillators will be connected
to the shared medium by wires of different lengths that will
also have different signal delays is a reason for concern.
In fact, a physical implementation of this idea as reported
in [14] was limited to a network of eight oscillators and also
required an off-chip signal generator for exciting the shared
medium.

In the SupplementaryMaterial, we also show how the prob-
lem of spurious pattern storage [8], [9] naturally arises as a
consequence of the Hebbian learning rule for weakly coupled
oscillators. The number of stored spurious patterns quickly
increases with the number of desired stored patterns [8],
imposing additional limitations on the storage capacity of
such networks.

Alternatively, an effective andwidely adopted approach for
solving a variety of pattern recognition problems is to use
‘‘discriminant functions’’ or more generally ‘‘artificial neural
networks’’ [18]–[20].

The basic idea of discriminant function approach is to
start with a function with some free parameters and then
tune these parameters so that the function’s output mainly
depends on the particular ‘‘class’’ to which its input belongs.
As an example, suppose wewant to distinguish between input
patterns belonging to two classes, �1, �2, using a discrimi-
nant function approach. We show the discriminant function
by f (x, η) where η is a vector of the free parameters of the
function and x is the function’s input. To make f (x, η) a good
discriminant function, one possibility is to look for a vector η

such that

f (x, η) > 0 if x ∈ �1

f (x, η) < 0 if x ∈ �2.

The process of finding vector η in above-mentioned is called
the ‘‘training phase.’’ After training is complete, we can
reliably use f (x, η) as a discriminant function to classify input
patterns to either class �1 or �2 by only looking at the sign
of f (x, η).

Building upon the idea of discriminant functions, we pro-
pose to use the term ‘‘discriminant circuit’’ to describe any
physical circuit with some free control parameters that can be
used in pattern recognition applications. The control param-
eters of a discriminant circuit should similarly be tuned such
that the circuit’s output depends mainly on some collective
property of its input signals. The circuit’s output signal can
then be used to distinguish different input patterns from each
other.

While complex software algorithms, enjoying access to
several layers of arbitrary discriminant functions, provide

the greatest degree of flexibility, discriminant circuits would
offer much faster processing speeds. Convergence to the final
steady state in the networks of coupled oscillators typically
takes a few hundred oscillation cycles. Therefore, faster pro-
cessing speeds are achieved if oscillators with higher free
running frequencies are used in forming the network. It is
also worth mentioning that while it is true that convergence to
the steady state may take longer in longer chains of coupled
oscillators, the average convergence time does not seem to
get impractically long. In fact, our numerical simulations
showed that in changing the length of an oscillator chain from
25 to 50 to 100, the median of the (normalized) convergence
time increased from 93.75 to 112.3 and 128.8 (normalized
time units), respectively. That is to say, the median conver-
gence time seems to rise sublinearly with the chain size.

The rest of this paper is organized as follows.
In Section II, we study the nonlinear dynamics of two
coupled oscillators and show how arbitrary phase shifts
can be enforced between them by controlling the ratio of
two different coupling channel strengths. Accurate circuit
simulation results using the device models of ST Bi-COMS
130-nm technology show remarkable agreement between the
mathematical model and the simulated behavior of the circuit.
In Section III, we present a simple chain of coupled oscillator
with tunable coupling parameters as a discriminant circuit
and show how it can be used to realize the core of a non-
Boolean pattern recognition engine with CMOS oscillators.
The simplicity of the coupling structure makes the proposed
circuit design readily implementable in any standard CMOS
technology. Finally, Section IV discusses future research
directions and concludes this paper.

II. NONLINEAR DYNAMICS OF
TWO COUPLED OSCILLATORS
In this section, we study the nonlinear dynamics of two
weakly coupled oscillators using the ‘‘phase-reduced,’’ or
perhaps better known ‘‘Kuramoto,’’ model [15]–[17]. In par-
ticular, we analyze the case where two symmetric coupling
channels exist between the oscillators and show how by con-
trolling the ratio of the two couplingmode strengths, arbitrary
phase shifts are enforced between the oscillators.

The celebrated Kuramoto’s approximation to the dynamics
of two weakly coupled oscillators with a ‘‘symmetric’’ cou-
pling gives [17]

θ̇1 = k sin(θ2 − θ1 − ψ) (2)

θ̇2 = k sin(θ1 − θ2 + ψ) (3)

where, as shown in Fig. 1, θ1 and θ2 are the phase vari-
ables associated with the two oscillators, and k and ψ

show the strength and inherent phase shift of the cou-
pler, respectively. As a consequence of symmetric coupling
assumption [13], [17], the inherent phase shift termψ appears
in the first equation with a minus sign and in the second equa-
tion with a plus sign, consistent with the reference direction
of coupling shown by the arrow in Fig. 1. With reference
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FIGURE 1. Kuramoto model of two weakly coupled oscillators.

FIGURE 2. Bimodal, symmetric coupling of two oscillators.

to Fig. 2, let us now assume that two symmetric coupling
channels with the strengths of a/2 and b/2 and inherent
phase shifts of ψa and ψb exist between two oscillators. The
Kuramoto model of this system is the sum of expressions for
each coupling channel1

θ̇1 =
a
2
sin(θ2 − θ1 − ψa)+

b
2
sin(θ2 − θ1 − ψb)

θ̇2 =
a
2
sin(θ1 − θ2 + ψa)+

b
2
sin(θ1 − θ2 + ψb).

Therefore, the dynamics of the relative phase shift between
the oscillators, ϕ = θ2 − θ1, is governed by

ϕ̇ = a sin(−ϕ + ψa)+ b sin(−ϕ + ψb). (4)

We now proceed to find the steady-state solution of (4). First,
notice that a Lyapunov function [21] exists for this system,
which guarantees convergence to steady state

E(ϕ) = −a cos(−ϕ + ψa)− b cos(−ϕ + ψb)

⇒ Ė = −(ϕ̇)2 ≤ 0.

A stable steady-state solution of (4) necessarily corresponds
to a local minima of E(ϕ)

dE
dϕ
= 0

⇒
d
dϕ
{a cos(−ϕ + ψa)+ b cos(−ϕ + ψb)} = 0

d2E
dϕ2

> 0

⇒
d2

dϕ2
{a cos(−ϕ + ψa)+ b cos(−ϕ + ψb)} < 0.

1This linear behavior is a consequence of approximating phase distur-
bances around the oscillator’s limit cycle with the gradient of its phase
function, see [16], [17] for more details.

In order to get a final closed formula for ϕ, it is better to
rewrite E(ϕ) using Euler’s formula

E(ϕ) = −
a
2
[ei(−ϕ+ψa) + ei(ϕ−ψa)]

−
b
2
[ei(−ϕ+ψb) + ei(ϕ−ψb)].

Simple algebraic manipulation reveals that steady-state
condition, (dE/dϕ) = 0, gives

eiϕ(ae−iψa + be−iψb ) = e−iϕ(aeiψa + beiψb ).

Since the left- and right-hand sides of the above-mentioned
equation are complex conjugates of each other, they should
be purely real to be equal, that is

e−iϕ(aeiψa + beiψb ) ∈ R.

There are only two possibilities for ϕ to satisfy this
requirement

ϕ =

{
Arg(aeiψa + beiψb )± 2nπ
Arg(aeiψa + beiψb )± (2n+ 1)π.

On the other hand, the stability condition, (d2E/dϕ2) > 0,
implies

d2E
dϕ2

> 0⇒ eiϕ(ae−iψa + be−iψb ) > 0.

Therefore, the stable steady-state phase shift between the
oscillators is

ϕ = Arg(aeiψa + beiψb ). (5)

The above-mentioned result has an interesting intuitive inter-
pretation: if one considers the effect of each coupling channel
in Fig. 2 separately, it is easy to see that the top coupling
pushes the relative phase shift between the two oscillators
to ψa, whereas the bottom coupler pulls it toward ψb.
In the presence of both coupling channels, the final phase shift
can be found from the weighted vector superposition shown
in Fig. 3.

FIGURE 3. Weighted superposition of two coupling channels.

It is not difficult to realize different coupling channels
between physical oscillators. In a three-stage CMOS ring
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FIGURE 4. Different coupling channels of two CMOS ring
oscillators.

oscillator shown in Fig. 4, adjacent inverter gate voltages
naturally have a phase shift of 2π/3 with respect to each other
and therefore depending on which points of two such oscilla-
tors are connected via a resistor, different coupling modes can
be realized. For example, if only the middle coupling in Fig. 4
is active, then θ2 + 2π/3 should eventually become equal
to θ1 to minimize the energy loss in the resistive connection
between the two oscillators. This condition is then consistent
with having ψ = 2π/3 in (2). Similarly, one can argue that
the leftmost and rightmost couplings shown in Fig. 4 have
inherent phase shifts of 0 and 4π/3, respectively.

The circuit level schematic of the coupled ring structure
is shown in Fig. 5. The three inverter gates in oscillators
(1) and (2) are labeled as 1A, 1B, and 1C and 2A, 2B, 2C,
respectively. The input terminals of the two couplers in the
middle are likewise labeled to imply connectivity to the
respective oscillator terminals without drawing explicit wire
connections. The couplers are CMOS transmission gates,
which are essentially resistors that can be digitally switched
ON or OFF by their gate control voltages, S1 and S2. Since con-
ductance of transistors are to the first-order proportional to
their aspect ratios, (W/L), a discrete set of coupling strengths
can be realized for each coupling channel by laying out a bank
of differently sized transmission gates on chip. The strength
of each coupling channel can then be digitally controlled by
activating the transmission gate with the desired size from this
available set.

The circuit in Fig. 5 has been simulated using accu-
rate device models of ST BiCMOS 130-nm technology in
Cadence Virtuoso. As can be seen from Fig. 6, the simulated
steady-state phase shifts of oscillators agree very well with
what (5) predicts.

III. PATTERN RECOGNITION WITH COUPLED
OSCILLATOR CHAINS
In this section, we generalize the case of two coupled oscil-
lators to a chain of coupled oscillators and show how this
structure can be used as a ‘‘discriminant circuit’’ in the sense
we explained in Section I.

FIGURE 5. Circuit level schematic of CMOS-coupled oscillators.

Fig. 7 shows a folded chain of 16 ring oscillators where two
types of tunable couplers, ‘‘input’’ and ‘‘training’’ couplers,
are available in each link. The system response is defined as
the phase shift between the oscillators at the two ends of the
chain, which is shown by ϕ. In a simply connected chain of
N oscillators, there are exactly l = N − 1 links and therefore
l different instances of ‘‘input’’ and ‘‘training’’ couplers each.
For a practical implementation, it is best to fold the chain
into a rectangular configuration similar to what is shown
in Fig. 7 to make the actual layout as compact as possible.
In the Supplementary Material, we outline the general way
of constructing such folded chains for rectangular networks
of oscillators with even number of rows and columns.

The ‘‘input couplers’’ have zero inherent phase shift and
their strengths, ak , are determined by a given 2-D input
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FIGURE 6. Agreement between theoretical and simulation
results.

FIGURE 7. Chain of oscillators with tunable couplings.

pattern as explained in the Supplementary Material. The
‘‘training couplers’’ on the other hand have an inherent phase
shift of 2π/3 and their relative strengths, bk , will be deter-
mined in the training phase. In other words, vectors a =
[a1 . . . ak ]T and b = [b1 . . . bl]T are analogous to vectors x
and η in the discriminant function f (η, x) formulation intro-
duced in Section I.

Intuitively, we expect that since there are no closed loops
in the folded chain structure, the phase shifts in each link can

be independently set to

ϕk = Arg(ak + bkei2π/3)

so as to minimize the total Lyapunov energy of the chain.
Consequently, a simple formula for the circuit output, ϕ, as a
function of the circuit coupling parameters exists

ϕ =

l∑
k=1

Arg(ak + bkei2π/3). (6)

If we had closed loops in the network, a constrained mini-
mization using Lagrange multipliers would be necessary to
ensure that sum of phase shifts around each loop would add
up to some multiple of 2π , and (6) would not necessarily be
valid. A more formal derivation of (6) can be found in the
Supplementary Material.

It is perhaps best to explain the circuit’s operation with
the aid of an example: suppose we want to train a coupled
oscillator chain network to distinguish some alphabet letters
irrespective of their orientation. To be more specific, imagine
that we want to classify the 32, 20× 20 pixel images of four
alphabet letters shown in Fig. 8.

FIGURE 8. Alphabet letter images used for network training.

As explained before, the input coupler strengths, ak , are
dictated by the input image. That is, we assign each ak to
one pixel in the input image and set its (normalized) value
to a minimum of say, 0.1, if the corresponding pixel is a
logical zero or a maximum of 1 if the corresponding pixel
is a logical one. Although we are assuming that the input
pattern is a binary image for simplicity in this example, this
is not essential to the circuit’s operation and, in general,
ak parameters can assume gray-scale values.
Our objective in the ‘‘training phase’’ is to find a good

choice of training coupler strengths, bk , that would result
in a discriminatory response of the circuit. For example,
a good discriminatory circuit response happens when ϕ is
concentrated around 0, 90o, 180o, 270o for the given samples
of A, B, C, D, respectively.
A practical training algorithm should also be limited to a

finite choice of bk parameters from some available set of cou-
pling strengths. We may thus define ‘‘training resolution’’ as
the total number of bits allowed in specifying bk parameters.

VOLUME 3, 2017 5
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The system response to each input can be visually repre-
sented by placing a dot at an angle of ϕ on a unity circle where
ϕ is calculated by (6). This visual representation is used in
Fig. 9 to show constant improvement in the discriminatory
behavior of the circuit with finer resolutions allowed in the
training.

FIGURE 9. Effect of training on separation between different
alphabet letter images.

The above-mentioned example is just meant to illustrate
the operation of coupled oscillator chain as a ‘‘discrimi-
nant circuit’’ and should not be considered a complete pat-
tern recognition system in itself. In particular, since there
is no ‘‘preprocessing’’ or ‘‘feature extraction’’ [18], [19]
steps involved, the system is prone to the infamous curse
of dimensionality problem [18], [19]. In other words, the
network parameters may currently be overfitted to give per-
fect outputs for the given samples in the training set but
that makes the system more vulnerable to noise and ran-
dom distortions and degrades its ability to perform useful
‘‘generalizations’’ [18], [19].

While it is certainly more convenient to have only one
discriminant circuit that classifies several different objects,
it is perhaps better to have a network of discriminant cir-
cuits where each circuit is specially trained in recognizing
just one particular object. A collaborative network of such
specialized, discriminant circuits would then become a more
powerful pattern recognition engine.

This strategy not only increases the total number of sam-
ples of each object that the system would be able to recognize
after training, but also has the added benefit of simplifying
the final circuit block that is necessary to interpret different
values of ϕ for either positive or negative classifications. This
is so because a simple ‘‘phase frequency detector’’ (PFD)
found in standard ‘‘phase-locked loops’’ [22]–[24] designs

FIGURE 10. Behavior of a successfully trained network.

can be integrated with the circuit to determine whether ϕ
is within some designated range or not. The output of the
PFD block determines whether the circuit ‘‘recognizes’’ or
‘‘rejects’’ a pattern given to it for classification. Of course,
as shown in Fig. 10, a successful training should be able to
find a set of bk parameters that results in ϕ to be within the
designated range for all the samples used in training. It should
be noted, however, that different discriminant circuits do not
necessarily need to correspond to different physical instances
on a chip. A single discriminant circuit can be sequentially
loaded with the right training parameters developed for dif-
ferent objects to determine their presence in a given image.

The general way of using chains of coupled oscillators for
pattern classification can thus be summarized as follows.

Let us show the object2 we want the circuit to recognize
by ξ . We also assume that several examples of ξ , which we
show by ξ (1) . . . ξ (m), are given that can be used in ‘‘training.’’
We pick a target value for the circuit’s output signal, ϕ = ϕ0,
load the network’s ak parameters with each of the patterns
ξ (1) . . . ξ (m), and try to find a single set of bk parameters that
would result in the circuit producing an output in the vicinity
of ϕ0 for every ξ (1) . . . ξ (m). We store the above-mentioned set
of bk parameters in some library as the ‘‘training template’’
for ξ and call it bξ for future reference.
Later, when an unidentified image, χ , is presented to the

system by loading the corresponding values of ak parame-
ters, we use the set bξ from above-mentioned and see if ϕ
happens to fall into the vicinity of ϕ0. That is, we now have
a testing method, which we may call the ‘‘recognize/reject’’
test for pattern ξ . If the result of the ‘‘recognize/reject’’ test
is positive, then χ is identified as another instance of ξ .
Otherwise, χ is considered to be an object different than ξ
and consequently the next training template in the library is
used to seek a match.

2By ‘‘object,’’ we mean some abstract concept, like ‘‘letter A’’ or ‘‘Cat,’’
that carries some meaning. By ‘‘example/sample,’’ we mean actual images
associated with such concepts, like the image of a letter ‘‘A’’ or a picture of
a cat
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There still remains a couple of issues with our structure that
need to be addressed at this point. These are what we may call
the problems of ‘‘false’’ and ‘‘ambiguous ’’ classifications
and are analogous to the problem of ‘‘spurious storage’’ in
Hopfield networks.

False classification happens when a pattern not similar
to ξ (1) . . . ξ (m) is labeled as another example of ξ . This is
possible to happen, because bξ was developed during the
training phase to make sure that when input image happens
to be any one of ξ (1) . . . ξ (m), then ϕ ≈ ϕ0 without neces-
sarily preventing other, perhaps unrelated, images to result in
producing the same values of ϕ.
Ambiguous classification is a consequence of false classi-

fication problem and happens when an input image, χ , can
be classified as an instance of more than on object, say both
ξ and λ, because with both bξ and bλ, the circuit output, ϕ,
falls into the vicinity of ϕ0.

Fortunately, there is an easy fix to the problem of false clas-
sification in our system. As shown in Fig. 11, the solution is to
find multiple, independent training templates, bξ(1), b

ξ
(2), . . .,

for different target values of ϕ0, say ϕ
(1)
0 , ϕ

(2)
0 , . . . and require

passing several ‘‘recognize/reject’’ tests using these templates
before an object is positively classified as ξ .

FIGURE 11. Developing several training templates using different
target angles.

Numerical simulations confirm (see Fig. 12) that chances
of false classification decreases rapidly (the fitted curve is
an exponential) as more training templates are developed and
consequently more ‘‘recognize/reject’’ tests are used for any
positive classification.

As a final note, we investigate the storage capacity of a
discriminant circuit, which can be defined as the maximum
number of samples of a single object for which the network
can be successfully trained (see Fig.10). In a realistic applica-
tion, different sample images used in training the network for
identification of a particular object may be highly correlated
with each other, which should make it easier to find a single
training template that gives the desired circuit output for all
of them. In quantifying the storage capacity of our network,

FIGURE 12. Chance of false classification versus number of
recognize/reject tests.

however, we assume a more pessimistic situation where sam-
ple images used for training are totally uncorrelated to see
if the network can still be successfully trained. We leave
the details of the training algorithm that is written as an
MATLAB code for the interested reader in the Supplementary
Material. Also a complete version of theMATLAB code used
for quantifying the network’s storage capacity is attached to
this paper. The result of these numerical experiments is shown
in Fig. 13 and can be summarized as follows.

FIGURE 13. Rate of successful training versus relative size of
training set.

For each fixed size of the network,N , an increasing number
of uncorrelated patterns, m, are allowed for training. The
x-axis shows the ratio x = m/N . The y-axis is the ‘‘success’’
rate in training the network for different values of N and m.
The target value of ϕ0 is arbitrarily set to π/4 in these
experiments and an experiment is called successful if for all
the ξ (1) . . . ξ (m) patterns, we have |ϕ − ϕ0| ≤ π/8. A total
of 1000 numerical experiments were carried on for each pair
of m and N .
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Interestingly, theMATLAB simulation results indicate that
the reliable storage capacity of network, which can be defined
as the maximum value of x for which the training success rate
is close to 1, increases with the network size and is more than
0.25 for N = 64.

IV. CONCLUSION
In conclusion, in this paper, we introduced the concept of
‘‘discriminant circuit,’’ proposed a novel way of controlling
relative phase shifts between CMOS ring oscillators with
arbitrary resolution, and showed how a simply connected
chain of coupled oscillators can be employed as an ultrafast
pattern classifier engine. The fast processing is due to the
fact that the settling time for the coupled oscillator chain,
i.e., for the link phase shifts to reach their final values, is
typically on the order of a few hundreds oscillation periods.
An important characteristic of this paper is the simplicity of
the circuit architecture, which relies only on local couplings
between adjacent oscillators and is readily implementable
on any standard CMOS technology. As for future research
directions, a prototype version of the circuit should be fabri-
cated and tested. The circuit should then be used in conjunc-
tion with other standard pattern recognition techniques, like
preprocessing and feature extraction, to be applied to more
realistic pattern recognition examples. Also, while the focus
in this paper was on coupled oscillators, a discriminant circuit
can be built with other physical components that would result
in even simpler andmore compact designs. An exampleworth
considering would be a tunable RC network with R and C
values acting as ‘‘input’’ and ‘‘training’’ parameters and the
circuit’s cutoff frequency as the discriminant circuit’s output.

REFERENCES
[1] P. Maffezzoni, B. Bahr, Z. Zhang, and L. Daniel, ‘‘Oscillator array models

for associative memory and pattern recognition,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 62, no. 6, pp. 1591–1598, Jun. 2015.

[2] D. E. Nikonov, ‘‘Coupled-oscillator associative memory array operation
for pattern recognition,’’ IEEE J. Exploratory Solid-State Comput. Devices
Circuits, vol. 1, pp. 85–93, Nov. 2015.

[3] T. Shibata, R. Zhang, S. P. Levitan, D. E. Nikonov, and G. I. Bourianoff,
‘‘CMOS supporting circuitries for nano-oscillator-based associative
memories,’’ in Proc. 13th Int. Workshop Cellular Nanoscale Netw.
Appl. (CNNA), Aug. 2012, pp. 1–5.

[4] S. P. Levitan, Y. Fang, D. H. Dash, T. Shibata, D. E. Nikonov, and
G. I. Bourianoff, ‘‘Non-Boolean associative architectures based on nano-
oscillators,’’ in Proc. 13th Int. Workshop Cellular Nanoscale Netw.
Appl. (CNNA), Aug. 2012, pp. 1–5.

[5] M. J. Cotter, Y. Fang, S. P. Levitan, D. M. Chiarulli, and V. Narayanan,
‘‘Computational architectures based on coupled oscillators,’’ inProc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2014, pp. 130–135.

[6] Y. Fang, C. N. Gnegy, T. Shibata, D. Dash, D. M. Chiarulli, and
S. P. Levitan, ‘‘Non-Boolean associative processing: Circuits, system
architecture, and algorithms,’’ IEEE J. Exploratory Solid-State Comput.
Devices Circuits, vol. 1, pp. 94–102, Dec. 2015.

[7] J. J. Hopfield, ‘‘Neural networks and physical systems with emergent
collective computational abilities,’’ Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[8] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Germany:
Springer-Verlag, 1996.

[9] J. Hertz, R. G. Palmer, and A. Krogh, Introduction to the Theory of Neural
Computation. Redwood City, CA, USA: Addison-Wesley, 1991.

[10] T. Aoyagi, ‘‘Network of neural oscillators for retrieving phase informa-
tion,’’ Phys. Rev. Lett., vol. 74, no. 20, p. 4075, 1995.

[11] F. C. Hoppensteadt and E. M. Izhikevich, ‘‘Oscillatory neurocomputers
with dynamic connectivity,’’ Phys. Rev. Lett., vol. 82, no. 14, p. 2983, 1999.

[12] P. Maffezzoni, B. Bahr, Z. Zhang, and L. Daniel, ‘‘Analysis and design
of boolean associative memories made of resonant oscillator arrays,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 11, pp. 1964–1973,
Nov. 2016.

[13] F. C. Hoppensteadt and E. M. Izhikevich, ‘‘Pattern recognition via syn-
chronization in phase-locked loop neural networks,’’ IEEE Trans. Neural
Netw., vol. 11, no. 3, pp. 734–738, May 2000.

[14] R. W. Hölzel and K. Krischer, ‘‘Pattern recognition with simple oscillating
circuits,’’ New J. Phys., vol. 13, p. 073031, Jul. 2011.

[15] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence. Berlin,
Germany: Springer, 1984.

[16] G. B. Ermentrout and D. H. Terman,Mathematical Foundations of Neuro-
science, vol. 35. New York NY, USA: Springer, 2010.

[17] E. M. Izhikevich, Dynamical Systems in Neuroscience. Cambridge, MA,
USA: MIT Press, 2007.

[18] C. M. Bishop, Neural Networks for Pattern Recognition. London, U.K.:
Oxford Univ. Press, 1995.

[19] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[20] T. Kohonen, Self-Organization and Associative Memory, vol. 8. New York
NY, USA: Springer, 2012.

[21] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications in
Physics, Biology, Chemistry, and Engineering. Reading, MA, USA:
Addison-Wesley, 2014.

[22] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2012.

[23] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[24] I. A. Young, J. K. Greason, and K. L. Wong, ‘‘A PLL clock generator
with 5 to 110 MHz of lock range for microprocessors,’’ IEEE J. Solid-State
Circuits, vol. 27, no. 11, pp. 1599–1607, Nov. 1992.

VAHNOOD POURAHMAD received the B.S degree in civil engineering
from Sharif University of Technology, Tehran, Iran, in 2008 and M.S.
degrees in mechanical engineering and electrical engineering from Cornell
University, Ithaca, NY, USA, in 2012 and 2016, respectively. He is currently
working toward his Ph.D. degree in electrical and computer engineering from
Cornell University.

His current research interest is in the study of electrical coupled oscil-
lators and their various practical applications in engineering, specifically in
designing non-Boolean/associative processors and phased array systems.

SASIKANTHMANIPATRUNI (M’07) received the B.S. degree in electrical
engineering from IIT Delhi, New Delhi, India, and the Ph.D. degree in
electrical and computer engineering from Cornell University, Ithaca, NY,
USA.

He is currently a Staff Scientist with the Exploratory Integrated Circuits
Group, Components Research, Intel, Santa Clara, CA, USA, where he is
involved in beyond-CMOS devices and circuits. He was a co-inventor of
several building blocks for silicon photonic devices, such as modulators,
switches, and WDM interconnects. He has authored 50 journal/conference
articles and has over 2000 citations in international journals. He has over 35
issued and pending patents in the fields of integrated photonics, spin devices,
and magnetic resonance imaging.

DMITRI NIKONOV (M’99–SM’06) received the M.S. degree in aerome-
chanical engineering from the Moscow Institute of Physics and Technol-
ogy, Moscow, Russia, in 1992, and the Ph.D. degree in physics from
Texas A&M University at College Station, College Station, TX, USA,
in 1996.

He joined Intel, Santa Clara, CA,USA, in 1998. He is currently a Principal
Engineer with the Components Research Group, Hillsboro, OR, USA, doing
simulation and benchmarking of beyond-CMOS logic devices, andmanaging
research programs with universities on nanotechnology.

8 VOLUME 3, 2017



Pourahmad et al.: Nonboolean Pattern Recognition Using Chains of Coupled CMOS Oscillators as Discriminant Circuits

IAN YOUNG (M’78–SM’96–F’99) received the B.E.E. and M.Eng.Sc.
degrees from the University of Melbourne, Melbourne, VIC, Australia, and
the Ph.D. degree in electrical engineering from the University of California
at Berkeley, Berkeley, CA, USA.

He is currently a Senior Fellow and the Director of the Exploratory
Integrated Circuits with the Technology and Manufacturing Group, Intel
Corporation, Hillsboro, OR, USA. He leads a research group exploring the
future options for the integrated circuit in the beyond-CMOS era.

Dr. Young is currently the Editor-in-Chief of the IEEE Journal of
Exploratory Solid-State Computational Devices and Circuits.

EHSAN AFSHARI (S’98–M’07–SM’11) received the B.Sc. degree in elec-
tronics engineering from the Sharif University of Technology, Tehran, Iran,
and the M.S. and Ph.D. degrees in electrical engineering from the California
Institute of Technology, Pasadena, CA, USA, in 2003 and 2006, respectively.

In 2006, he joined the Faculty of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, USA, as an Assistant Professor and was
promoted to an Associate Professor in 2012. In 2016, he joined the Electrical
Engineering and Computer Science Department, University of Michigan,
Ann Arbor, MI, USA, as an Associate Professor. His current research inter-
ests are mm-wave and terahertz electronics and low-noise integrated circuits
for applications in communication systems, sensing, and biomedical devices.

VOLUME 3, 2017 9


